NOTE

Translation of Russian Journal

Pergamon Press, Ltd. has announced the initiation in 1962 of the quarterly publication for the Pergamon Institute of U.S.S. R. Computational Mathematics and Mathematical Physics, consisting of papers translated from Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki, which succeeded Vychislitel'naīa Matematika in 1961. (For an announcement of the latter, see $M T A C$, v. 13, 1959, p. 231.)

The new publication includes also the translated lists of contents of all the Russian issues appearing up to the time of going to press.

The editorial board consists of R. A. Brooker, L. Fox, D. C. Gilles, C. B. Haselgrove, A. S. Householder, A. Salam, G. F. J. Temple, A. Thom, and J. H. Wilkinson. The scientific translation editor is R. A. Buckingham and the translator is Ruth Feinstein.

TABLE ERRATA

338.-A. Erdélyi, W. Magnus, F. Oberhettinger, \& F. G. Tricomi, Higher Transcendental Functions, v. 1-3, McGraw-Hill Book Company, Inc., New York, 1953-1955.

In v. 1 , on p .144 , the right side of eq. (8) should be multiplied by -1 .
In v. 2 , on p . 119 , the first factor of the right side of eq. (20) should read $\left(\frac{z}{2 \pi}\right)^{1 / 2}$.
On the succeeding page, in eq. (5) the factor $e^{-(1 / 2) a / z}$ should be replaced by $e^{-(1 / 4) a / z}$.

John J. Bowman
Conductron Corporation Ann Arbor, Michigan
339.-Jahnke-Emde-Lösch, Tables of Higher Functions, sixth edition, revised by
F. Lösch, McGraw-Hill Book Company, New York, 1960.

On page 228, in Table 38, the following terminal-digit corrections are necessary in the tabulated values of the modified Hankel function of order $\frac{2}{3}$.

x	$(2 / \pi) K_{2 / 3}(x)$	
	for	read
0.1	3.026	3.025
0.3	1.2716	1.2647
0.4	0.9681	0.9658
0.5	0.7678	0.7677
2.8	0.029877	0.029878
2.9	0.026540	0.026541
3.6	0.011770	0.011769
3.7	0.010499	0.010498
3.8	0.009369	0.009368
3.9	0.00362	0.008363
5.2	0.0019637	0.0019636

All these errors exceed 0.6 unit in the final decimal place. This list, which resulted from a check of the entire table, is believed to contain all errors significantly greater than possible minor rounding errors.
H. C. Thacher, Jr.

Argonne National Laboratory
Argonne, Illinois
340.-H. Riesel, "All factors $q<10^{8}$ in all Mersenne numbers $2^{p}-1, p$ prime $<10^{4}$," Math. Comp., v. 16, 1962, p. 478-482.

In the table of factors of M_{p} the following corrections are necessary.
The line
$9337 \quad 2838449 \cdot 2405633$
should be replaced by the two lines:
$9337 \quad 2838449$
$9397 \quad 2405633$
Similarly, the line
$9601 \quad 3513967 \cdot 16974569 \cdot 17256487$
should be replaced by the two lines:
$9601 \quad 3513967 \cdot 16974569$
$9619 \quad 17256487$
Moreover, two new entries should be inserted between the lines corresponding to $p=1439$ and $p=1543$. These additional lines are:
$1451 \quad 174121 \cdot 696481$
$1459 \quad 93377$
All other entries in this table are correct, and no further factors less than the stated limit have been omitted.

John D. Brillhart
University of San Francisco
San Francisco, California
341.-L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, 1960.

On page 64, in Section 4.2, entitled "Converging factors for Kummer's functions," several corrections are necessary in equations (4.2.18).

The constant term in the expression for b_{2} should read $\frac{8}{2835}$, in place of $-\frac{8}{567}$.
In the expression for b_{3}, the term free of k should read

$$
\frac{\mu^{2}}{\lambda}-\frac{1}{3} \lambda^{2}+\frac{13}{3} \mu+\frac{14}{3} \lambda-\frac{16}{8505},
$$

in place of

$$
\frac{7}{3} \mu-\frac{13}{3} \lambda^{2}+\frac{643}{540} \lambda-\frac{16}{8505} .
$$

In the expression for b_{4}, the following three substitutions should be made:
(1) The coefficient of k^{2} should read

$$
-2 \lambda^{2}-\frac{\mu^{2}}{\lambda}-6 \mu-\frac{364}{45} \lambda+\frac{152}{8505}
$$

in place of

$$
2 \lambda^{2}-4 \mu-\frac{1321}{180} \lambda+\frac{152}{8505}
$$

(2) The coefficient of k should read

$$
2 \lambda \mu+\frac{4}{3} \frac{\mu^{2}}{\lambda}+\frac{13}{3} \lambda^{2}+\frac{679}{135} \mu+\frac{2678}{567} \lambda-\frac{64}{8505}
$$

in place of

$$
2 \lambda \mu-\lambda^{2}+\frac{319}{135} \mu+\frac{2111}{567} \lambda-\frac{64}{8505} .
$$

(3) The term independent of k, indicated in the book merely by ϵ_{4}, is

$$
\frac{5}{3} \lambda \mu-\frac{1}{3} \lambda^{3}-\frac{\mu^{3}}{\lambda^{2}}-\frac{22}{3} \frac{\mu^{2}}{\lambda}+\frac{583}{135} \lambda^{2}-\frac{2473}{135} \mu-\frac{2066}{135} \lambda-\frac{8992}{12629925} .
$$

The undersigned have also found the complete expression for b_{5} and all of the expression for b_{6} except for the term independent of k.

Furthermore, three minor misprints occur in the text: on p. 61, on the second line of section 4.2, in the formula for S_{1}, for $n!$, read r; on p . 64 , in the first of equations (4.2.17), for $b_{0}{ }^{\prime \prime}-b_{1}{ }^{\prime}$, read $b_{0}{ }^{\prime \prime}-b_{0}{ }^{\prime}$; and in the last of equations (4.2.17), for $b_{n+1}^{\prime \prime}-b_{n+1}^{\prime \prime}$, read $b_{n+1}^{\prime \prime}-b_{n+1}^{\prime}$.
R. A. Carr-Hill
A. Casson
A. R. Curtis

National Physical Laboratory
Teddington, England

CORRIGENDA

James H. Bramble, "Fourth-order finite difference analogues of the Dirichlet problem for Poisson's equation in three and four dimensions," Math. Comp., v. 17, 1963, p. 217-222.

The author's affiliation is given incorrectly on p. 222; it should read
Institute of Fluid Dynamics and Applied Mathematics
University of Maryland
College Park, Maryland
This is stated correctly at the end of his review on p. 311.
John Brillhart, "Concerning the numbers $2^{2 p}+1, p$ prime," Math. Comp., v. 16, 1962, p. 424-430.

On p. 424 , in section 2 A , read "it easily follows that $5 \mid A_{p}$ iff $p \equiv \pm 3(\bmod 8)$ and $5 \mid B_{p}$ iff $p \equiv \pm 1(\bmod 8)$."

In the Table of Factors the first factor of B_{p} when $p=227$ should read 5449 , instead of 54449 . Corresponding to $p=443$, the entries c and 5 should be interchanged.

A typographical error at $p=769$ has previously been noted (Math. Comp., v. 17, 1963, p. 215).

